

Solutions for Flooding of Butano Creek on Pescadero Creek Road

cbec - Chris Hammersmark, John Stofleth, Denise Tu, and Dale Meck

Stillwater Sciences - Ethan Bell, Holly Burger and Zooey Diggory

Public Meeting - November 17, 2014

Goals of the Meeting

- Explain the causes of flooding at the bridge and what can be done to address these causes
- Understand the role of sediment
- Review solutions
- Discuss pros and cons for the environment, permitting, and costs
- Discuss next steps

Sediment Budget Conclusions

Credit: Setenay Frucht - SF Bay Regional Water Quality Control Board Martin Trso - contractor to UC Berkeley

Key findings regarding Butano Creek:

- Over the last 200 years changes in land use combined with channel management have altered the amount of sediment delivered to and moving through the creeks and the marsh/lagoon.
- Sediment delivery to Butano Creek has increased by 2.5 times
- Channel incision is the largest sediment source of increased sediment load
- Historical **floodplains are disconnected** from the creek and are no longer able to store sediment, instead they are a source
- Butano Creek appears to be the major contributor to sedimentation in the marsh
- Elevated sediment loads are expected to continue

Change in Areas Where Sediment Gets Deposited

Stillwater Sciences

Looking downstream at the channel at this location

Photo credit: Setenay Frucht and Martin Trso

Looking downstream at the channel at this location

Pescadero Creek Daily Average Flows and Flood Peaks

Pescadero Creek Daily Average Flows and Flood Peaks

Pescadero Creek Daily Average Flows and Flood Peaks

Butano Creek Profile

Peak Water Surface Profiles - Existing Conditions

Looking Downstream at Pescadero Creek Road

Existing Condition Flooding Extents

Many Solutions were Proposed and Analyzed

- Do nothing
- Dredge within county right-of-way
- Dredge beyond county right-of-way
- Sigma Prime dredging concept
- Dredge within right-of-way and along the road a short distance
- Dredge irrigation ditch in Butano Marsh
- Create new channel parallel to historic channel in Butano marsh
- Create a bypass channel through fire station
- Raise roadway
- Construct causeway and raise roadway
- Reduce sediment supply from upstream
- Solution to improve habitat and restore sediment storage
- New concepts developed by team (combination of components)
- Vegetation management / removal without dredging
- Create storage pond / reservoir in Butano Marsh

Components of a Solution

Downstream of the bridge

Near the bridge

Upstream of the bridge

Many Solutions were Proposed and Analyzed

- Do nothing
- Dredge within county right-of-way
- Dredge beyond county right-of-way
- Sigma Prime dredging concept
- Dredge within right-of-way and along the road a short distance
- Dredge irrigation ditch in Butano Marsh
- Create new channel parallel to historic channel in Butano marsh
- Create a bypass channel through fire station
- Raise roadway
- Construct causeway and raise roadway
- Reduce sediment supply from upstream
- Solution to improve habitat and restore sediment storage
- New concepts developed by team (combination of components)
- Vegetation management / removal without dredging
- Create storage pond / reservoir in Butano Marsh

Dredge within Right of Way

Summary

Extent: 50 ft upstream and downstream

- Dimensions: 10 ft deep X 50 ft wide (500 ft²)

- Area: 7000 ft²

- Volume: 3000 yd³

Flood Benefits

- Reduces amount of frequent flooding
- 2 year event would not overtop sandbags, but could flood road from downstream
- Dredged area fills in rapidly during the first significant flood event (~2 year or larger)

Dredge within ROW – Inundation Right After Dredging

Dredge within Right of Way – Change through Time

 Benefits from dredging will not last long unless upstream sediment reduction actions are taken

Flood Reduction Benefits

	Simulated Maximum Upstream Water Surface Elevation ¹ (ft, NAVD88)			
Scenario	Immediate Condition		Future Condition ²	
	2-Yr Event	10-Yr Event	2-Yr Event	10-Yr Event
Existing condition	14.9	16.0	15.3	16.0
Dredge within ROW	13.6	14.4	15.1	16.0
Dredge ROW & along historical channel	13.5	14.4	14.4	15.9
Dredge ROW & parallel to road and through marsh	13.4	14.2	14.5	16.0
Dredge ROW & ~800 ft parallel to road into marsh	13.4	14.2	14.7	15.5
Reconnect floodplain	14.9	15.9	15.2	16.0
Construct elevated causeway	13.4	14.3	14.4	15.9

NOTES:

- 1 Results reported for a location immediately upstream of the road.
- 2 Reflects topographic conditions after 10 years of the sediment transport model was used to estimate the distribution and movement of sediment throughout the project area for a 10-year period.

* Low point of sandbags is 14.2 ft & low point of the road is 12.8 ft

Causeway

Floodplain Reconnection & Restoration

Estimate of Construction Costs

- Costs do not include: planning, design, permitting, mitigation and maintenance.
- Costs assume disposal of dredge material nearby (not at Ox Mountain Landfill in HMB)

Scenario	Estimated Cost	
Dredge within ROW	\$168,500 per dredging	
Dredge ROW & along Historical Channel	\$2,237,280	
Dredge ROW & Parallel to Road and through Marsh	\$1,409,850	
Dredge ROW & ~800 ft Parallel to Road into Marsh	\$295,000	
Elevated Causeway	\$10,060,000	
Floodplain Reconnection (Example Project)	\$688,000	

Permits and Regulatory Compliance

REGULATION	AGENCY	REQUIRED DOCUMENT
Clean Water Act Section 404	USACE	Nationwide Permit or Individual Permit
Clean Water Act Section 401	RWQCB	401 Certification
Endangered Species Act Section 7	USFWS/NMFS	Biological Assessment/Biological Opinion
National Historic Preservation Act	SHPO	Cultural resources report
California Fish and Game Code Section 1602	CDFW	Streambed Alteration Agreement
California Coastal Act	San Mateo County/ Coastal Commission	Coastal Development Permit
California Environmental Quality Act	CDFW or San Mateo County or State Parks	Initial Study/Mitigated Negative Declaration or Environmental Impact Report
Non-Discretionary Permits	San Mateo County	Grading permit application

Not easy, but not impossible Streamlining available for restoration projects

Implications for Sensitive Species

- Dredging downstream of the bridge is the only mechanism to improve habitat connectivity and fish passage.
- Dredging at the bridge not likely to harm or benefit
- Floodplain restoration upstream of the bridge will restore habitat, and will improve long-term conditions in marsh

What We Have Learned

- There is a tremendous amount of sediment coming downstream.
 Addressing it is important.
- Creating a larger opening at the bridge can help with flooding, but the benefits don't last long.
- Dredging into the marsh helps some, but will still require frequent dredging to prevent road flooding.
- The alignment of downstream dredging doesn't make a big difference on flood levels.
- Elevating the road and expanding the bridge has the longest lasting flood reduction benefits for the road.
- Vegetation management won't solve the problem, but it will help in combination with other actions.
- All solutions will require numerous permits, but all can be permitted.
- Habitat impacts/benefits vary widely, but improving fish passage and reducing sediment loads through floodplain restoration are the most significant benefits.

The Solution

Implement upland sediment control activities

 Reconnect/restore upstream floodplains to promote sediment deposition and improve habitat

 Create flow capacity at the road either through dredging or by building a causeway

 Restore/create an open channel to provide habitat connectivity

Next Steps

www.sanmateorcd.org/PescaderoFlooding.html

Hydrology | Hydraulics | Geomorphology | Design | Field Services

Photo country Half Moon Bay Review

Solutions to Flooding on Pescadero Creek Road

Prepared for:

San Mateo County Resource Conservation District

Prepared by:

cbec, inc. eco engineering with assistance from Stillwater Sciences

October 17, 2014

Project # 13-1032

